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The aim of the paper is to present a new transport process which is likely to have 
great importance for understanding the internal constitution of the stars. 

In order to set the problem in context, we first give a short presentation of the 
physical properties of the Sun and stars, described usually under the names Standard 
Solar Model or Standard Stellar Models (SSM). Next we show that an important 
shortcoming of SSM is that they do not explain the age dependence of the lithium 
deficiency of stars of known age: stars of galactic clusters and the Sun. It was 
suggested a long time ago that the presence of a macroscopic diffusion process in 
the radiative zone should be assumed, below the surface convective zone of solar-like 
stars. It is then possible for the lithium present in the convective zone to be carried 
to the thermonuclear burning level below the convective zone. The first assumption 
was that differential rotation generates turbulence and therefore that a turbulent 
diffusion process takes place. However, this model predicts a lithium abundance 
which is strongly rotation dependent, contrary to the observations. Furthermore, as 
the diffusion coefficient is large all over the radiative zone, it prevents the possibility 
of gravitational separation by diffusion and consequently leads to the impossibility 
of explaining the difference in helium abundance between the surface and the centre 
of the Sun. The consequence is obviously that we need to take into account another 
physical process. 

Stars having a mass M < 1.3M0 have a convective zone which begins close to 
the stellar surface and extends down to a depth which is an appreciable fraction of 
the stellar radius. In the convective zone, strong stochastic motions carry, at least 
partially, heat transfer. These motions do not vanish at the lower boundary and 
generate internal waves into the radiative zone. These random internal waves are 
at the origin of a diffusion process which can be considered as responsible for the 
diffusive transport of lithium down to the lithium burning level. This is certainly not 
the only physical process responsible for lithium deficiency in main sequence stars, but 
its properties open the way to a completely consistent analysis of lithium deficiency. 

The model of generation of gravity waves is based on a model of heat transport 
in the convective zone by diving plumes. The horizontal component of the turbulent 
motion at the boundary of the convective zone is assumed to generate the horizontal 
motion of internal waves. The result is a large horizontal component of the diffusion 
coefficient, which produces in a short time an horizontally uniform chemical com- 
position. It is known that gravity waves, in the absence of any dissipative process, 
cannot generate vertical mixing. Therefore, the vertical component of the diffusion 
coefficient is entirely dependent on radiative damping. It decreases quickly in the 
radiative zone, but is large enough to be responsible for lithium burning. 

Owing to the radial dependence of velocity amplitude, the diffusion coefficient 
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increases when approaching the stellar centre. However, very close to the centre, 
nonlinear dissipative and radiative damping of internal waves become large and the 
diffusion coefficient vanishes at the very centre. 

1. Introduction 
1.1. Physical processes 

Interpreting observational data in astrophysics presents the difficulty of taking into 
account all the proper physical processes. This is a well-known problem in astro- 
physics, and there are many historical cases of enlightenment coming from taking 
into account in the theory of stellar bodies a forgotten physical process. 

We shall analyse here a process of fluid dynamics which takes place inside the stars 
and has been almost entirely ignored by astrophysicists. We consider the properties 
of low-mass stars, having a mass close to the solar mass M,: M < 1.3 M,. We first 
have a look at stellar structure; next we introduce the astrophysical problems raised 
by observational data and finally we show the need to take into account the diffusion 
process induced by random gravity waves. 

1.2. Stellar structure 

We first give a standard description of stellar structure, with the introduction of the 
appropriate technical terms. In Standard Stellar Models (SSMs) it is usually assumed 
that all motions are of small amplitude and in particular that the velocities are 
small compared to the sound velocity. We consider here non-rotating stars. A static 
non-rotating star has spherical symmetry. Going from the outside to the inside, we 
meet (figure 1): 

(i) the surface layers, which constitute the stellar atmosphere. Down to a certain 
depth, these layers are stable. Despite the motions induced by fluid motions in the 
conuectiue zone (next paragraph) we can consider as a first approximation that the 
stellar atmosphere is at rest. 

(ii) Below the surface layers, stars with a mass M < 1.3M, have an unstable 
region ($2.1). In this region, the heat flux coming from the inside cannot be carried 
by radiation only and a large fraction of it is carried by convective motion. This 
unstable region, the conuectiue zone, extends inside the star down to the radius where 
the heat flux can again be carried entirely by the radiation field. The depth of the 
convective zone depends on chemical composition and on stellar mass. The depth is 
relatively greater when the mass is smaller. 

(iii) Below the convective zone, there is a stable radiative zone. Near the stellar 
centre, is the region of energy sources. Stars which have only experienced a short 
evolutionary phase have their energy produced by thermonuclear reactions taking 
place close to the centre, in a region called the stellar core. The rate of thermonuclear 
reactions can be expressed by simplified power-law expressions, T". In the solar 
case, with a central temperature around 15 x 106K, n N 4, whereas, for stars of 
mass M > 1.2 M,, with a central temperature around 18 x lo%, the rate of energy 
production is more sensitive to temperature and we have n N 20. In this case, heat 
production is more concentrated near the centre. The consequence is the presence of 
a convective core. We shall not consider this case in the present paper. 
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FIGURE 1. Size of the convective zone as a function of mass (Schatzman & Praderie 1990). 

1.3. Abundances of chemical elements 
The determination of the abundances of chemical elements in stellar atmospheres relies 
on both precise spectroscopic measurements and on elaborate stellar atmospheres 
models. The quality of the data has improved considerably during the last few years 
and very elaborate atmosphere models are available, for example those of Kurucz 
(1991). We can consider that at present data on the abundance of the elements are 
highly reliable. 

1.4. Chemical composition 
Stellar abundances are usually compared to cosmic abundances. These cosmic abun- 
dances are derived from chemical measurements of materials from Earth and of 
meteorites. We give here the usual notations. A logarithmic scale is used, the 
abundance of the element X being written 

where usually the abundance of silicium is assumed to be given by the relation 
[Si] - [HI = -6. With the reference value [HI = 12 the cosmic abundance of lithium 
[Li] is usually assumed to be close to 3.3. 

1.5. Lithium 
We shall consider in this paper mainly the problem of lithium abundance. 

Thirty years ago, solar abundances of chemical elements were considered essentially 
comparable to cosmic abundances. Perhaps the most important step has been the 
discovery by Herbig (1965) of a lithium abundance deficiency in solar-like stars. 
These stars with a mass M < 1.3Ma are characterized by the presence of a surface 
convective zone. 

Lithium is destroyed by the nuclear reaction 

7Li +'H = 24He 

which begins to be important at a temperature of about 2.5 x 106K, much lower 
than the temperature in the central core. The absence of Li in the spectrum is an 
indication of lithium destruction. The presence of lithium lines in a spectrum means 
that the temperature at the bottom of the convective zone is lower than its burning 
temperature of 2.5 x 106K. It is an indication of stellar structure and properties of 
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the outer layers, when the temperature Tb at the boundary of the convective zone is 
less than 2.5 x 106K. 

Since 1965, the volume of data has considerably increased as shown by the most 
recent papers: Michaud & Charbonneau (1991), Soderblom et al. (1990, 1993a, 
1993b), Soderblom (1991), Pasquini et al. (19944, Pasquini, Liu & Pallavicini (1994b), 
Martin & Rebolo (1993), Randich & Pallavicini (1991), Balachandran (1993, 1994) 
but it appears also that they have become more and more difficult to understand. The 
simple idea that there is a universal time dependence of lithium abundance results 
in a number of inconsistancies which have led to the idea that it is necessary to 
take into account a variety of physical processes. Lithium burning, somewhere below 
the convective zone, appears to be the most important process. There is a clear age 
dependence of lithium abundance, the most obvious example being the remarkable 
case of the Hyades, but the physical conditions under which this is taking place 
implies a variety of processes or constraints. 

1.6. Physical processes 
Conditions of star formation. Stars are usually assumed to be formed by contraction 
of a cloud of interstellar matter. Before reaching the main sequence, they experience 
a number of physical processes, burning of 'D in the central regions, mixing due 
to instabilities, mass loss due to stellar wind, etc. (Bodenheimer 1965; D'Antona & 
Mazzitelli 1984, 1994), 

Stellar structure. The SSMs do not take into account all physical processes, 
such as overshooting from the unstable convective zone to the stable radiative zone, 
microscopic and macroscopic transport processes, the influence of plasma instabilities 
on the rate of thermonuclear reactions, etc. Schatzman (1969), Schatzman & Maeder 
(1981) and Schatzman et al. (1991) have shown the possible role of transport processes 
in SSMs, and Baglin & Lebreton (1990) their role in stellar evolution. 

Metal abundance and activity. The depth of the convective zone depends on metal 
abundance, and consequently also on the efficiency of the dynamo mechanism which 
is at the origin of stellar activity. There are observational data (Pasquini et al. 1994b) 
which indicate the presence of these mechanisms, and Schatzman (1993b) has given 
preliminary indications of their effect on the amplitude of gravity waves. 

Gravitational separation. This is an old problem (Aller & Chapman 1960; Michaud 
1970; Vauclair & Vauclair 1982; Michaud & Profitt 1993), but new developments 
have come from the interpretation of the difference in abundance of 4He between the 
solar convective zone and the radiative zone. This can be explained by gravitational 
separation of 'H and 4He (Christansen-Dalsgaard, Proffitte & Thomson 1993; Perez 
Hernandez & Christensen-Dalsgaard 1994) but it requires a quiet solar interior, which 
contradicts the standard description of differential rotation and meridional circulation 
(e.g. Zahn 1992). 

Analysis of the data. The data show no clear correlation between rotation and 
lithium deficiency, except that spindown and lithium deficiency are respectively asso- 
ciated with the time dependence of the velocity of rotation and of lithium burning 
(Balachandran 1993). Differential rotation and meridional circulation can generate 
a turbulent diffusion process, but it seems difficult to obtain a complete agreement 
between the data and the models (Baglin, Morel & Schatzman 1985; Schatzman & 
Baglin 1991; Montalban 1996). 
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1.7. Models of lithium burning. 
For stellar masses smaller than about 1.3 Mo, the time dependence of lithium de- 
ficiency shows clearly that it is due to a relatively slow process, carrying lithium 
from the surface layers to the burning level which is located at the level where the 
temperature is about 2.5 x 106K. But at the same time, a large scatter in abundances 
for ( B  - V )  > 0.8 (Soderblom et al. 1993a) shows the need to include several other 
physical processes, which have not yet been untangled. 

In any case, dealing with transport process by diffusion from the bottom of the 
convective zone to the burning level is unavoidable (Schatzman et al. 1981), but the 
difficulty is in finding how this mechanism is generated. There are several possibilities 
and the major constraint is to build a model of the diffusive process which is physically 
fully consistent. Next come astrophysical constraints, such as the following: (i) the 
magnitude of the diffusion coefficient must satisfy the constraint of the lithium burning 
time scale, (ii) the model of lithium deficiency must be consistent with all data, and 
(iii) the diffusion mechanism must be consistent with all other physical properties of 
stars.? 

1.8. Turbulence. 
Turbulence seemed first to be the best candidate for generating the diffusion process 
(Schatzman et al. 1981) and Zahn (1983) provided the first model for the turbulent 
diffusion coefficient, turbulence being generated by meridional circulation and dif- 
ferential rotation. Baglin et al. (1985) and Schatzman & Baglin (1991) have shown 
that the model of turbulent transport by Zahn (1983) was not consistent with the 
mass dependence and the observed velocity of rotation. Zahn (1992) suggested a 
new model for the diffusion coefficient, where the main agent is the effect of the 
loss of angular momentum on differential rotation. The attempt by Charbonnel & 
Vauclair (1993) to explain the lithium abundances in the Hyades using the diffusion 
coefficient of Zahn (1992) rested on the assumption that all stars had the same initial 
velocity of rotation, 100 km s-’. This assumption ignores the existence of an initial 
velocity distribution function and therefore can be considered as a proof that the 
diffusion process depending on the total loss of angular momentum does not lead to 
an acceptable explanation of lithium deficiency. 

In any case, all these turbulent diffusion coefficients in the radiative zone are derived 
from a phenomenological description which implies at least one free parameter, which 
needs to be adjusted for the Sun. But essentially the difficulty is consistency: as shown 
by Montalban (1996), the observed values of lithium abundance imply a distribution 
function of the velocity of rotation very different from the observed one (Bouvier 
1994). 

These difficulties led Schatzman (1991a, b, c )  to take into account the diffusion 
process induced by gravity waves, which was considered for the first time in astro- 
physics by Press (1981) and Press & Ribicky (1981). Carruthers & Hunt (1986) have 
described the production of gravity waves by random motion in geophysical and 
astrophysical contexts. This model consider values of the ratio of the wave frequency 
to the Brunt-Vaissala frequency, a,”, which do not correspond to the solar ratio. 

1- The existence of error bars is not ignored. But it should be noticed that some physical quantities 
are more critical than others. For example, the period of rotation of some stars in the Hyades are 
known with a great precision. But the error bar of lithium abundance can be larger. But if we 
consider the large dispersion of lithium abundances, for example in the Pleiades (Soderblom et al. 
1993a), or in solar-like field stars (Pasquini et al. 1994a), it is clear that the observational data do 
not put a clear constraint on the diffusion process. 
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Schatzman (1991a, b, c, 1993a), following the presentation of Press (1981), gave only 
an order of magnitude estimate of the diffusion coefficient, but this gave a value of 
the lithium deficiency as a function of mass for the Hyades in agreement with the 
observations (Schatzman & Montalban 1995; Montalban & Schatzman 1996). As 
there was still a free phenomenological parameter, a more consistent demonstration 
of the expression for the diffusion coefficient was required. 

1.9. Structure of the paper 
As the model is based on the physical process due to gravity waves, we have to 
consider a model of the generation of gravity waves. In $2 we present a description of 
the motions in the convective zone using plumes, which allows boundary conditions 
between the radiative and the convective zone to be written. In $3 we give the 
properties of gravity waves and in $4 we derive the diffusion coefficient resulting from 
the presence of random gravity waves. This is applied in $5 to the lithium problem. 
In the conclusion, we consider the fact that the gravity waves model does not explain 
entirely lithium abundance properties and this suggests that it is necessary to take 
into account other physical processes. 

2. Motions in the convective zone 
2.1. Introduction 

It is necessary to consider the nature of the motion in the convective zone in order 
to write the boundary conditions which determine the amplitude of internal waves in 
the radiative zone. 

The standard description of the boundaries of the convective zone is the following. 
If we consider the adiabatic motion of a bubble, in a stable region a rising bubble 
becomes colder than the surroundings and comes back to its departure point. In 
SSMs, the stability condition is 

dlog T dlog T 

With the introduction of the Brunt-Vaissala frequency N : 

dlogT d logT 
N 2  = ik (m - (m)J 

the stability condition is written 

N 2  2 0. (2.3) 
However, when considering the dynamics of the motions in the convective zone, 

it is clear that there is inertial motion which carries the fluid beyond the standard 
boundary defined by equations (2.2) or (2.3). The presence of this penetration of the 
convective motion, or overshooting is important. The description of overshooting by 
Zahn (1991) provides an extension of the convective zone, but its size is not known. 
Note here that the model of Zahn depends of two phenomenological parameters: (i) 
the mean-square velocity at the boundary, and (ii) the asymmetry of the flow. With a 
proper choice of these parameters, there is a slight change in the solar model which 
leads (Berthomieu et al. 1993) to a better agreement with helioseismology data. 

As we shall see in $3, the equation of propagation of a monochromatic internal 
wave without damping is a fourth-order differential equation in which the coefficient 
of the first derivative of the amplitude of the wave vanishes with [ ( N 2 / w 2 ) -  11, where 
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o is the gyrofrequency of the wave. This corresponds to a singularity of the solution 
in the WKBJ approximation. In a model like Zahn's, the Brunt-Vaissala frequency N 
presents a discontinuity at the boundary of the convective zone. Consequently, coming 
from the radiative region, the factor [(N2/02) - 11 does not vanish at the boundary, 
and this makes writing boundary conditions easier (Schatzman 1993 ; Montalban 
1994). It appears that it is equivalent to the conditions described by Press (1981) 
in the case of a steep variation of N 2 ,  and it can be simply assumed that there is 
continuity of the horizontal component of the turbulent velocity at the boundary of 
the convective zone. 

At this point, everything depends on the description of the velocity field at the 
boundary of the convective zone. The mixing length theory (MLT) of the convective 
zone is usually used to describe stellar models. Despite the fact that the MLT leads 
to stellar models essentially in agreement with observational data, it should be kept 
in mind that, from the hydrodynamical point of view, the MLT has a number of 
inconsistencies. We present briefly the possible models. 

2.1.1. Kolmogorov spectrum 
The simplest idea consists in assuming the presence in the convective zone of 

a Kolmogorov spectrum (known as K41), with a characteristic horizontal scale l ~ ,  
and a maximum velocity provided by the MLT of the convective zone (Schatzman 
199 la,b,c, 1993). 

2.1.2. Bumps 
It is possible to use the model used by meteorologists (Townsend 1965; Stull 

1976) for the production of gravity waves in the stable region above the atmospheric 
convective zone. It assumes that gravity waves are produced by velocity bumps of a 
Gaussian shape. What are the properties of gravity waves generated this way? Do 
they maintain a sufficiently large amplitude to produce the expected diffusion effects? 
Taking into account the damping of propagating internal waves by dissipative effects, 
Townsend (1965) gives the following characteristic damping depth zc : 

where vo is the velocity at the boundary, o the angular frequency, N the Brunt- 
Vaissala frequency, and D the diffusion coefficient. Townsend gives a penetration of 
gravity waves into the Earths stable atmosphere over the cloud tops of the order 
of 100 metres. But in the stellar case, in order to take into account the spectral 
properties of the generating mechanism of internal waves, it is better to use the 
similar expression for zc given by Press (1981): 

where kH is the horizontal wavenumber. The horizontal wavelength is assumed to be 
of the order of the vertical scale height. For the lowest frequency WO, 

a0 = kHuO, (2.6) 

we obtain a very small vertical scale PC of the order of lo7 em, and such a value 
would rule out immediately the idea of any effect of internal waves. However, we can 
consider the fact that turbulence has a large spectrum of frequency and wavenumber 
since o, for a Kolmogorov spectrum, is proportional to k2/3. For k w 10kH the o4 
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term is about 500 times bigger and damping has a characteristic vertical scale of the 
order of 1O1O cm. The corresponding characteristic velocity is smaller, by only a factor 

but penetrates deeper. It appears clearly that if we take into account the 
statistical properties of the turbulent spectrum (Schatzman 1993; Montalban 1994) 
parts of the gravity waves will penetrate deeply inside the Sun. 

2.1.3. Plumes 
Numerical simulations (Hurlburt, Toomre & Massaguer 1986; Steffen 1993; Steffen 

& Freytag 1991; Cattaneo & Malagoli 1992) suggest that the plume model of 
convective heat transport is probably closer to physical reality than bumps. We follow 
here the simple model of Rieutord & Zahn (1995), which is based on the experimental 
data obtained in the Earths atmosphere. The properties of the turbulent velocity 
in the plumes are also given by experimental data (List 1982), and the only free 
parameter is the total number of plumes at the surface of the Sun, which is estimated 
by Rieutord & Zahn (1995) to be of the order of 1000. They occupy 21% of the 
surface of the Sun at the bottom of the convective zone. 

2.2. The plumes model 
The plumes model of Rieutord & Zahn (1995) is certainly a simplified picture. 
However, it appears to be a good introduction to a description of the production of 
internal waves. To obtain better numerical values, we extend the model of Rieutord 
& Zahn to the spherical case, and give a model of the turbulent motion generated in a 
plume on its arrival at the boundary of the convective zone (Schatzman & Montalban 
1995). 

2.2.1. Plane parallel case 
We write first the equations describing a plume in the plane parallel case, following 

the model of Rieutord & Zahn, before applying the model to the spherical case. A 
plume broadens during its propagation. In the most simple model, the gas surrounding 
a plume is almost at rest. Consequently, entrainment of the gas into the plume is due 
to the horizontal velocity gradient. It is assumed that the plumes are axisymmetric 
and that their horizontal radius b = b(r) is small compared to the radius r :  

b(r) 4 r. (2.7) 

It is then possible to introduce, instead of the spherical coordinate 8, colateral with 
the symmetry axis of the plume, the distance s = r8 to the symmetry axis. In the 
same way, instead of d/ra8, we can write alas. It is then possible to follow the model 
of Rieutord & Zahn (1995) and to use the formal representation by Gaussians of the 
vertical component of the velocity vr. the density fluctuations dp, and of the enthalpy 
excess dh :  

vr(r,t) = V(r)exp (-s2/b'), (2.8) 

dh(r,s)  = Ah(r)exp (-s2/b'). (2.10) 

dp(r,s) = Ap(r)exp ( - s 2 / b 2 ) ,  (2.9) 

We can then write the three equations governing the motion: 
mass conservation 

i a  i a  
as 

_ _  rz ar r'pv, + - -spvS = 0 ;  (2.11) 
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conservation of momentum 
1 8 2  i a  

r2 ar s as 
r pv: + --spv,v, = 6 p g ;  -_ 

conservation of energy 

l a  i a  
r2 ar s as 
- - (6h + +v2) r2pu,  + -- (6h + 40’) spvS = 0, 
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(2.12) 

(2.13) 

which assumes that the radiative flux inside the plumes is negligible. Rieutord & 
Zahn (1994) integrated these three equations with respect to s from zero to infinity. 
The value of each integral is determined by the entrainment hypothesis of Taylor 
(Turner 1986; Morton, Taylor & Turner 1956). It is assumed that the radial flux of 
matter towards the axis of the plume is proportional to the vertical velocity on the 
plume axis: 

lim sv, = -ab(r)Iv,(r,O)l, (2.14) 

where a is a measure of the entrainment magnitude. With the notation 
s++Oo 

5 = 1 +Ap/p (2.15) 

we obtain the following equations: 
mass conservation 

(2.16) l a ,  5 + 1  
- - r -  V(r)b2po ~ = 2ab(r)po V (  r )  ; 
r2 ar 2 

conservation of momentum 

conservation of energy 

3 5 + 1 -  P ri  . 
6 12 n r2’ 

+ V3(r)pob2- - --- 
25 + 1 

Ahpo V (  r)b2 ____ 

(2.17) 

(2.18) 

where rb is the radius of the lower boundary of the convective zone and 9 is the 
total flux (enthalpy flux plus kinetic energy flux) carried by the plume. 

The size of the plume given by its radius b at the bottom of the convective zone of 
radius rb is 

b = PO(R - r b )  (2.19) 
with Po = (6a/7), and a = 0.083 (Turner 1986). This gives b = 14500km. With 
the total number of plumes on the Sun Npl = 1000, this corresponds, as mentioned 
above, to occupation by plumes of 21% of the solar surface. The maximum vertical 
velocity of a plume at the bottom of the convective zone is 

(2.20) 

With Pb = 0.2 g ~ m - ~ ,  the solar luminosity and zo = 200000km, 

I/ = 2.84 lo4 cm s-l (2.21) 

which is much larger than the value derived from the MLT, 

(2.22) 

with q = 0.1. 
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2.2.2. Spherical case 
To obtain the best values of the diffusion coefficient, we have to take into account 

the effects of sphericity, which are not included in the plume model of Rieutord & 
Zahn (1995) and furthermore to use a reasonable description of the turbulence. We 
shall assume that the diameter of the plumes is small compared to the stellar radius, 
which allows use of equations (2.8), (2.9), (2.10). 
(i) For diving plumes, in order to take into account the effect of sphericity we modify 
the self-similar solution of Rieutord & Zahn by introducing correction terms for the 
width of the plumes, their velociy and their density. After integration, this gives for 
the width 

bl = 0.92b (2.23) 
and for the velocity 

Vi = 1.34V. (2.24) 
(ii) Turbulence is assumed to be generated by shear flow at the boundary of a plume. 
We define the boundary as where the shear is maximum, s1 = l/$b. We assume that 
the maximum scale of the turbulence bM is defined as where the velocity gradient is 
maximum. This gives 

bM = (le)’’’ bl. (2.25) 
To define the characteristic velocity of the turbulent flow we use the experimental 
results for jets from List (1982): 

(u2)lI2 = O.285(V1) 3 VM. (2.26) 

We define the average velocity V,, inside the radius of maximum shear as 

( v,,) = ( V )  Jsl e-S21b2sds 11’’ sds. 
0 

(2.27) 

The aim of this description of the turbulent flow in plumes is to avoid, if possible, 
the introduction of adjustable phenomenological parameters. 

2.3. Penetrative convection 
Owing to the change of sign of N 2  beyond the Schwarzschild limit, the buoyancy 
force changes sign and generates an upwards motion. Figure 2 gives a qualitative 
view of a plume profile. We know from numerical models that the vertical motion 
back into the convective zone is accompanied by a horizontal extension of the plume. 
We are interested in the properties of this horizontal extension as it is the location of 
turbulent motions. The theory of horizontal extension for motion in a fluid (Aseda 
& Imberger 1993; Larson & Jonsen 1995) is at present being applied by Lo (1996) 
to the astrophysical case 

The plume model is based on a self-similar Gaussian representation of velocities 
(Rieutord & Zahn 1995). In this model, turbulent velocity in the plume decreases 
horizontally like exp{-(s/b)’}, where s is the distance to the vertical axis of revolution 
of the plume, and the auto-correlation function decreases very fast, away from the 
axis, beyond the distance b(r) ,  which is the basis of the description of the plumes. With 
the Gaussian auto-correlation function, the contribution of the small wavenumbers 
k to the diffusion process turns out to be negligible. In order to obtain the average 
auto-correlation function, it is necessary to take into account the properties of the 
velocity field in the penetration region. Even if we assume that the auto-correlation 
function has locally a Gaussian shape, we need to describe the average properties. 
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FIGURE 2. The plume flow. After penetration there is an area of upwards fluid motion 
which is sketched here. 

This can be done by taking the Fourier transform of local auto-correlations functions 
and then taking their average over all horizontal distributions of the properties of 
the velocities. 

The velocity in the overshooting region decreases with the distance to the symmetry 
axis of the plume and we choose to describe the properties of the velocity by a power 
law, us - s-". As we shall explain $4, the result is an average auto-correlation function 
of the turbulent velocity which is given, in a first approximation, by a power law 
(s' - s)". The s-' law for the amplitude of the velocity in the spreading flow, just 
mentioned, suggests taking, as an approximation of its Fourier transform, ( k / k ~ ) - ~ .  
A faster decrease of the auto-correlation at large distances suggests taking, as an 
approximation of its Fourier transform, ( k / l ~ ~ ) - ~ .  

We do not yet have a complete theory of the auto-correlation at large distances 
from the plume axis, and we need to introduce phenomenological parameters. We 
shall show $4 how to use this description of the turbulent flow to write the boundary 
conditions leading to the formation of random gravity waves. 

3. Internal waves 
3.1. Introduction 

Gravity modes can be present as standing waves or propagating waves. As standing 
waves, they have been considered for a long time as eigen-modes of stellar oscillations. 
Since the start of helioseismology, there has been a search for low-frequency gravity 
modes as solar pulsations in the Sun but so far it has been unsuccessful. Gough 
(1991) and de Rujula & Glashow (1992) have considered the contribution of these 
modes to solar structure and their effect on the production of solar neutrinos. Bahcall 
& Kumar (1993) have shown that the effect is negligible. 

We do not consider eigen-modes here but instead, as suggested by Press (1981) and 
Press & Ribicky (1981), the whole spectrum of propagating gravity waves generated 
by the turbulent flow at the boundary of the convective zone. As we shall see, these 
waves are damped, due to radiative thermometric diffusivity. Going downwards from 
the boundary of the convective zone, the amplitude of internal waves first decreases. 
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On moving towards the stellar centre, the amplitude increases but finally radiative 
damping becomes so large that the amplitude goes to zero. This can be compared to 
the results of Carruthers & Hunt (1986), where the radiative damping does not have 
the same importance. 

3.1.1. Nonlinear effects 
Nonlinear effects are almost negligible if the amplitude of the horizontal motion is 

small compared to the horizontal scale of the motion. As an order of magnitude, this 
condition can be written 

kH > (DHz)-lI2 

where DH is the horizontal diffusion coefficient, z the characteristic auto-correlation 
time and k~ the horizontal wavenumber, and this gives kH > 7 x lo-" which is 
obviously fulfilled close to the boundary of the radiative zone, as it corresponds 
to dimensions smaller than the solar radius. As the horizontal diffusion coefficient 
(4.6) decreases like p-' ,  close to the boundary the linear approximation condition is 
fullfilled. However, when approaching the centre, the r3 term becomes important, 
and it is necessary to take into account damping processes (55.2). It is found that 
nonlinear effects clearly never become important. 

Wave dissipation is such that it is not necessary to take into account the reflection 
of the waves near the centre and boundary conditions can be ignored. The Brunt- 
Vaissala frequency becomes equal to the wave frequency only very close to the centre 
( r  < O.OIRo) and the change from propagating waves to evanescent waves can be 
ignored. 

3.1.2. Effects of internal waves 
Two effects due to internal waves have to be considered: 
Macroscopic diflusion process. Through a process similar to what takes place in a 

turbulent flow (Batchelor 1952; Knobloch 1977), random internal waves generate a 
diffusion process. However, there is a difference between a perfect fluid (no dissipative 
process) and a fluid presenting a dissipative mechanism. 

Consider first a perfect fluid. As explained by Press ( 1981), when the thermometric 
diffusivity is zero, the diffusive transport is entirely horizontal (Bretherton 1969; 
Grimshaw 1984; McIntyre 1973). There is no vertical diffusive transport as the fluid 
entropy carries a 'memory' of the level at which it should sink or rise, counteracting 
any second order fluid forces. 

Consider now non-conservation of entropy resulting from radiative heat transfer. 
Irreversible effects, due to dissipative processes, generate a finite r.m.s displacement 
of fluid elements. A diffusive process takes place, and the aim of the present paper is 
to obtain the best possible description, with important consequences for the surface 
abundance of lithium and beryllium (Montalban 1994) and possibly for the solar 
neutrino flux. 

Transport of angular momentum. Internal waves carry angular momentum (Goldre- 
ich & Nicholson 1989a,b) and a description of stellar rotation has to take this effect 
into account. A preliminary approach to this process has been given by Schatzman 
(1993), and it will not be considered in the present paper. 

3.2. Amplitude as a function of depth 
A complete description of gravity waves has been available for a long time (Cowling 
1941; Ledoux & Walraven 1958). We are interested here in the classical case, when 
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the presence of pressure waves can be ignored, and we assume that the fluid motion 
can be described in the linear approximation by the fourth-order differential equation 
given by Press (1981). Introducing the function y related to the vertical component 
of the fluid velocity uv  by the relation 

U V  = y ~ p ~ ~ ~  k i ,  (3.1) 

we have 

Assuming that the damping effect is small, it is possible to replace the imaginary 
part of the equation for the function 11’ by the solution of the equation without 
damping. Then, the WKB approximation provides the expression for the fluid 
velocity of propagating internal waves as a function of depth (Press 1981). For a 
wave propagating downwards, the vertical component of velocity is 

The index b refers to the boundary of the convective zone. For example, UHb is 
the horizontal component of the velocity at the boundary. The relation between the 
vertical wavenumber kv  and the horizontal wavenumber kH is 

(3.4) 

where N is the Brunt-Vaissala frequency. Note that as long as N2/02 > 1 we have 
a progressive wave which turns into an evanescent wave when N2/02 < 1. In most 
of the radiative zone, N2/02 + 1. In the radiative zone, a characteristic property 
of gravity waves is damping due to radiative dissipation (figure 3). We write the 
coefficient expressing the effect of damping on the vertical velocity as exp [ - $ A ] .  As 
the horizontal wavenumber k is proportional to l/r,  it is necessary to introduce the 
boundary wavenumber kb. Then, we have 

A = f k i / 0 4  

with 

(3.5) 

Taking this to the second order, the approximation appears to be valid as long as 

(3.7) 

Denoting x as the fraction of the radius rb of the boundary of the convective zone, 
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FIGURE 3. Domain of weak damping of gravity waves near the boundary of the convective zone 
and near the solar centre. The wavenumber is the abscissa and the gyrofrequency is the ordinate. 

we have with r - (l/kH), 
1 

kH = - k H b .  
X 

When N 2 / m 2  + 1, the condition given by equation (3.7) can be written 

With the characteristic wavenumber kB and the characteristic frequency of the turbu- 
lence at the boundary, coB = kBu, we obtain the condition 

(3.10) 

In order to obtain a quantitative estimate of condition (3.10), we can use characteristic 
quantities given by the plume model (see 52.2). We define the wavenumber which 
corresponds to the plume radius b at the boundary of the convective zone by 

k B  = 2 n / b .  (3.11) 

With the values given in 52.2 of 

u = 1.085.104 cm s-l and b = 1.555 x lo9 cm (3.12) 

and an order of magnitude for the other quantities: 

N 2  2: 4 x and Dth 2: lo7 (3.13) 

we have the condition 
x * 0.088. (3.14) 

It is clear that since the damping of monochromatic waves depends on kb and w, 
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the result will depend on the integration over the kb and o spectra. The main problem 
is then to describe the production of gravity waves. 

3.3. Complete description of the damping 
It is necessary to consider more completely the solution of equation (3.2). With the 
definition of x (3.8) and the notations 

wr2 47c2r,2 
A=& - = K2,  
Dth b2x2 

and introducing a factor h to be taken later equal to 1, equation (3.2) becomes 

- a 4 ~  ax4 + [-id - 2K2]  h2__;_ a2y ax- + [ -i6K2 ( g - l ) K 4 ] h 4 Y = 0  

and we proceed with the technique used for WKB solutions. We write 

Y = exp] cpdx 

with 

and we obtain the equations 
cp = hcpo + q 1 +  h-'cp2 + ... 

cpi + [-id - 2K2] c p i  + [ -idK2 (;: - - 1) = o , }  

4cp&p1+ 6cp&pb + (-i6 - 2K2) (cpb + 2cpocp1) = 0. 

The solution of equations (3.19) is 

cpg = [id + 2K2 - (-d2 + 4 i6K2N2/02)  1/2] 

cpl = -- 
cpp6 640; - (id + 2K2) 
cpo 4cp; - 2(i6 + 2K2)' 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Introducing the function sinh 5, characteristic of the radiative damping of the wave 
with a vertical wavenumber ( N / o ) ( k b / x ) ,  defined by 

(3.21) 

we obtain the real and the imaginary parts of 90, called a and c respectively: 

(3.22) 
and 

When 5 is small, i.e. when 

(3.23) 

(3.24) 

the expressions for a and c reproduce the solution of Press (1981). When we replace, 
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in condition (3.24), k b  and o respectively by the quantities which are characteristic 
of plumes, 2n/b = 4.49 x lop9 and wB = u/b = 5.71 x lop6 we find, close to the 
boundary of the convective zone 

17.32 
X2 

sinht = - B 1. (3.25) 

In fact, as we shall see $4, in order to calculate the diffusion coefficient, we have to 
carry out an integration over the whole spectrum of the perturbation, which means 
introducing the Fourier transform and integrating the wavenumber kb from -co to 
+a. This is valid in the plane parallel approximation. In fact, as we are considering 
a sphere, we have to deal with a summation over spherical harmonics. Replacing the 
summation by an integration over a continuous variable, the wavenumber, this would 
be equivalent to carry the integration from 2n/rb to infinity. In that case, keeping the 
same characteristic frequency, equation (3.25) becomes 

sinh ( = 0.0136/x2 (3.26) 

which means that for x B 0.1 we can use the equations resulting from the approxi- 
mation 5: small. 

4. Diffusion coefficient 
4.1. Ensemble auerage 

The classical expression for the diffusion coefficient in a turbulent flow has been given 
by Taylor (1921). A more general demonstration has been given by Knobloch (1977, 
1991). When the diffusion process is due to a random velocity field, the diffusion 
coefficient is obtained by taking an ensemble average. 

4.2. Horizontal diflusion 
As recalled by Press (1981), Bretherton (1969) has shown that adiabatic motion brings 
any fluid element back to the level from where it started. Vertical diffusion therefore 
vanishes in the adiabatic case, whereas horizontal diffusion is always present. 

For horizontal diffusion, the expression given by Knobloch (1977, 1991) is valid: 
00 

DH = 1 (UH(tbH(t’))d(t’ - t )  (4.1) 

where the angle brackets denote an ensemble average. We shall first consider the 
plane parallel case, and then give an approximation for the spherical case. 

In any case, it is necessary to express the relation between the ensemble average of 
the second order product of horizontal velocities in the radiative zone (UH(X, ~)uH(x,  t ’ ) )  
described by internal waves and the ensemble average of the square of the turbulent 
velocity (uT(x, t)uT(x, t’)) which generates internal waves. In order to obtain this 
relation, we take the inverse Fourier transform, 

u ~ ( x ,  t )  = J J J QH(1, m, o)exp { -ilx - ily - iot} dl dm d o  (4.2) 

together with a similar one for the turbulent velocity. Correspondingly, QH is the 
Fourier transform of the sum of the motions U T  due to N P I  plumes (see $3.3) 

To calculate the ensemble average we have to write the relation between two 
ensemble averages : 

(QT(l,m,o)QT(Z’,m’,o’)) and (a~(l ,rn,o)Q~(l’ ,m’,w’)) .  (4.3) 
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We have to take into account the combination of the correlated noise inside the 
plumes and the white noise coming from all the plumes together. As shown by 
Chandrasekhar (1943), Rayleigh (1880, 1899) and recalled by Garcia-Lopez & Spruit 
(1991), as an effect of white noise interference, the second ensemble average (internal 
waves) will arise from the sum of the auto-correlation function d at the bottom of 
each plume: 

i = N p l  

C d ( ( x  - xi? + (Y - yi12) (4.4) 
i=l 

If the auto-correlation function is a Gaussian, exp(-(x2 + y2)/b2)), its Fourier trans- 
form is exp(-ib2k2). In the same way, the Fourier transform of the auto-correlation 
function in time is exp(-iz2w2). 

We can then obtain the horizontal diffusion coefficient DH, 

DH = (UH(t)UH(t'))d(t' - t ) .  J 
This is the result of taking the Fourier transform in the plane parallel case with 
horizontal coordinates going from-oo to +co. In the spherical case we should use 
spherical harmonics, but as we only want orders of magnitude we use the following 
approximations: (i) we replace the infinite horizontal surface by a square with a side 
2L, (ii) we replace the sum of trigonometric functions by an integral from -L to +L. 
Which value should we choose for L ? Owing to the finite size of the source there is 
a minimum wavenumber kminr which is the wavenumber of the largest scale and is of 
the order of 2/rb. 

The average squared velocity is equal to the squared velocity in the area of a plume 
times the ratio of the area occupied by the plumes, Nplnrbh divided by the area of 
the spherical bondary 4nri. Because b M  kmin 4 1, and using the classical approximate 
expression for the diffusion coefficient due to random motion 

D = [m(u(t)u(t'))d(t' - t )  N U'Z, 
J o  

where z is the auto-corelation time scale, we have at 

The order of magnitude of z is 27cb/vb where b is the 
is the horizontal turbulent velocity at the boundary, 

the boundary 

horizontal correlation length, v b  

and Np! the number of plumes 
over the surface of the boundary of radius rb. With the values of the scale b~ given by 
equation (2.22) and of the velocity given by equation (2.23) this provides an horizontal 
diffusion coefficient of the order of 5 x 10"cm2s-' at the boundary, which means a 
mixing time scale of the order of 500 years. 

Taking into account the depth dependence of radiative damping, the average 
contribution of all plumes over the surface of the boundary and the interference 
effect, we can obtain the horizontal diffusion coefficient as a function of depth. With 
the method of steepest descent for integration over w, we have 

(4.6) 

The result is very sensitive to the values of kmin and z. With the values obtained in 52 
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the diffusion coefficient slowly decreases as a function of depth. Around r/rb N 0.1 it 
gives a mixing time scale of the order of 5000 years, which is very short compared to 
evolutionary time scales. We can conclude that horizontal mixing is very efficient and 
generates a uniform horizontal chemical composition. 

4.3. Vertical diffusion 
In the presence of radiative damping, there is no entropy conservation, and there 
remains a vertical diffusion coefficient remains. We start from the Lagrangian ex- 
pression given by Frisch (1987) derived from the classical treatment of stochastic 
differential equations, 

a, 

Dv = 1 (v(t)u(t’))d(t’ - t) (4.7) 

where the angle brackets denote ensemble average. Using the quantities A (equation 
(3.5)), and 

f = JrbDthN3 r (:)3dr 

we can express the Lagrangian velocity as 

u, = u(z, y) + 7 J‘ udt. a, (4.9) 

We now use expression (4.9) for the Lagrangian velocity in terms of the Eulerian 
(3.3) velocity where the index b designates the values at the boundary of the convective 
zone ; k b  is the horizontal wavenumber: 

k i  = 1; + mi.  (4.10) 

Since the horizontal wavenumber is proportional to l / r  and the horizontal coordinate 
is proportional to r ,  the products lx and my do not depend on r and the sum (lx + my) 
can be written equivalently as + rnbyb), where xb and yb are the horizontal 
coordinates at the boundary. We can now drop the index b. 

For N 2 / w 2  + 1, which is the case in almost the whole radiative zone and is also 
true at the upper boundary if penetrative convection (Zahn 1991) has been taken into 
account, the expression (3.3) for the vertical velocity simplifies to 

xexp [i (/kvdr-wt) +i( lx+my) exp -- . (4.11) I [:I 
According to Bretherton’s (1969) theorem, the first-order term makes a zero con- 
tribution to the diffusion process. Therefore we keep in the z-derivative only the 
contribution due to radiative damping. We have 

(4.12) 

The diffusion coefficient now takes the form 

which turns out to be of the fourth order with repect to the velocity. 
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As already mentioned, we are concerned with the problem of the generation of 
internal waves by turbulent motion inside plumes, at the boundary of the convective 
zone. We base the description of the plumes on the picture given by Rieutord & 
Zahn (1995). We use first the plane parallel approximation as a step towards the 
description of motions with spherical symmetry. 

As the propagation of internal waves is described by monochromatic waves, equa- 
tion (3.3), it is necessary to introduce the Fourier transform of the motion occurring 
at the boundary of the radiative zone and then to take the inverse Fourier transform 
at the depth z, including this time k-dependent terms introduced by the z derivatives 
present in equation (4.13). In order to take the ensemble average, we follow the rule 
given by Knobloch (1977), for the products of two ensemble averages of two terms. 
This results in the presence of three products, but the integral taken over two of them 
do vanish. Therefore, the ensemble average of the four terms in equation (4.13) can 
be obtained as the product of the two ensemble averages: 

( a::t) /‘u,(t)dt) and (y /“u,(t’)dt’). (4.14) 

Taking the ensemble averages, we shall simply use the standard relation between the 
ensemble average in x, y ,  t and in 1, m, o. 

We shall describe the motion at the boundary by the sum of the motions of N p ~  
plumes, 

(4.15) ~ ( x ,  Y ,  t) = C ui(x - xi, Y - Y i )  , 
i 

each of the velocities ui having the same auto-correlation properties, 

(ui(x - xi, y - yi)ui(x’ - xi ,  y’ - y i ) )  = u 2 r  (x’ - X, y’ - y )  . (4.16) 

We shall consider later the problem of the auto-correlation function. For example, 
we can assume that 

r(x’ - x,y’ - y )  = r (-s2/b2) (4.17) 

s2 = (x’ - xy + (y’ - y y  (4.18) 

but we shall assume that in between two plumes there is no correlation. In other 
words, whereas there is auto-correlation of the motions inside a plume, the motion 
coming from different plumes can be considered as a white noise. 

In order to describe the production of internal waves by random plumes we shall 
introduce another approximation to the plane parallel description. We have to take 
into account the fact that we are using in our reasoning the mixture of a plane 
parallel geometry with spherical properties. To be more coherent, we should use 
spherical harmonics, but, as we are essentially interested in orders of magnitude, we 
shall simply assume that the minimum value kmin of the wavenumber k is related to 
the radius r b  of the boundary of the convective zone: 

with 

(4.19) 

In other words, and with the same order of magnitude, we can assume that there is 
production of plumes inside a square of surface 4L2, of the same order of magnitude 
as the surface of the boundary of the convective zone 47~;. 
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We then have 

xei'Xi+imyi d(x - xj)d(y - yj)dt. (4.20) 

Before integration over x and y we have to take the ensemble average 

We now have to take the ensemble average and then carry out the integration in 

In equation (4.11) we call the factor depending on r only G(r): 
equation (4.13). 

G(r) = (:) 3'2 (:) 1'2 (6) - 1'2 

and denote as F ( r )  the factor 8 f / d r  : 

(4.22) 

(4.23) 

Denoting the parameters of integration for the four functions in (4.13) l,, m, (or k,) ,  up, 
with p = 1,2,3,4 we can write the diffusion coefficient: 

t having the indices 1 and 2 and t' having the indices 3 and 4. Taking into account the 
assumption expressed by equation (4.14) we calculate the ensemble average, coupling 
the two products 

rI and rI (4.25) 
p=1,4 p=2,3 

As mentioned above, the turbulent motion due to plumes is characterized by an 
auto-correlation property which is easily obtained by integration over 1, m and w using 
the expression for 2 given by equation (4.20): 

(ir(l,m, co)ir(l', m', 0')) = ~ p l ( u ~ )  (1/2x)3 6(1+ t ) d ( m  + m')6(o + 0') 
/ ei15 r (< )d< / eimq r ( q  )dq eiwer (@do. (4.26) J 

4.3.1. Auto-correlation function 
It remains to give the expression for the average correlation function. 
Below the level rSchw of the Schwarzschild condition, there is a plume with an 
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upwards motion due to the buoyancy force, starting from the penetration level of 
a downwards moving plume coming from the convective zone (Larson & Jonssen 
1995). The diameter of the buoyant plume goes to infinity and the velocity goes to 
zero when approaching the critical level. 

We can expect a turbulent velocity field distributed around the plume axis, with a 
mean square velocity and a local auto-correlation width depending on the distance to 
the plume axis. We have to take the Fourier transform of each local auto-correlation 
function of the turbulent velocity, then we have to take the average of these local 
transforms over the whole surface of the buoyant plume. 

Finally we assume local auto-correlation functions 

T ( a , t  - a)T(b,il - b ) r ( e )  (4.27) 

where a, b are the horizontal coordinates of the local auto-correlation functions, and 
5 and q the distances to these coordinates; 6 is a time variable and we shall assume 
that the average time auto-correlation function is a Gaussian. We need the ensemble 
average : 

(r (a, t - au- (b, il - b)).  (4.28) 

From the properties of a Fourier transform such as 

7c 
da = --( 1 + ab)e-”b 

4b3 
(4.29) 

we derive the phenomenological approximation to be used to describe the properties 
of the average (4.26). 

Introducing the notations F(l),  f’(m) and T ( w )  for the average auto-correlation 
functions we write the result of the integration to be carried out in equation (4.26): 

(@l ,  m, w)G(l’, m’, 0’)) = NP~(u2)d (1  + 1’)6(m + m’)6(o + w’)b2z ( 2 7 ~ ) ~ ’ ~  
x F( l )F(m)F(  w ). (4.30) 

The expression for these auto-correlation functions can be derived from the prop- 
erties of isotropic, uniform turbulence. Lesieur (1993, p. 111) gives the relation 
between the energy spectrum and the correlation tensor function for three- and two- 
dimensional turbulence. We can derive as a phenomenological relation the expression 
for the product : F(l)T(m) will be taken either as (k/kM)-2 or ( k / k ~ ) - ~ .  We consider 
now the asymptotic value of the integration over k, for ( f z4 /b&)  a 1. 

As a first case, we consider the s-l law for the amplitude of the velocity in 
the spreading flow, as already mentioned. This suggests taking (k/kM)-2 as an 
approximation of its Fourier transform. We then have 

lrn: 5 (%)>‘ow’exp { -$} kdkr = k$-. w 

f 
(4.31) 

In the second case a faster decrease of the auto-correlation at large distances suggests 
taking (k/kM)-3 as an approximation of its Fourier transform. We then have 

3 113 

(4.32) 
/ O0 - k3 (F) w w‘exp { -$} kdk = Ctk& (-$) . 

b i n  O5 

Taking into account the delta function 6(w + w’) we can carry out the integration 
over o. 
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FIGURE 4. Diffusion coefficients given by expressions (4.33) and (4.34). 

For the first case, we obtain an expression for the diffusion coefficient similar to 
the one used by Montalban & Schatzman (1995): 

(4.33) 

For the second case we obtain an expression in agreement with former estimates, 
based on the introduction of a Kolmogorov spectrum (Schatzman & Montalban 
1995). The diffusion coefficient is 

(4.34) 

Figure 4 gives the curves for these two diffusion coefficients. They both decrease very 
quickly down from the convective zone boundary, which suggests the possibility of a 
good description of lithium deficiency ($5). 

4.4. Large radiative damping 
When approaching the stellar centre, the variable 
We then have the asymptotic expressions 

(equation (3.21)) becomes large. 

(4.35) 

(4.36) 
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With the expression (3.21) for sinh 5 we have 

a 2: k b  T b / X ,  (4.37) 

(4.38) 

(4.39) 

The velocity is derived from equations (3.1) and (3.2). For a monochromatic wave, 
we have 

where the exponent 2 comes from the relation between y and u and the exponent 
312 comes from equation (4.39). We have then to take the ensemble average defined 
by equation (4.13). It is proportional to 

(4.41) 

Neglecting as before the auto-correlation factor exp ( -k,2b2/4) the integration over k 
from kmin to GO gives 

with kmin = 2/rb we find that 

D~~~ - x20 (1nx)-2 x ---f 0. 

(4.42) 

(4.43) 

We conclude that the diffusion coefficient vanishes when approaching the stellar 
centre. This is valid when x < 0.1. 

5. Diffusion in stellar cores 
We still have to consider the validity of the diffusion coefficient close to the centre. 

5.1.  Work against gravity 
In a region with a p gradient, outward diffusion of helium and inward diffusion 
of hydrogen takes place at the expense of the flux of mechanical energy. The 
luminosity of mechanical energy of monochromatic waves (Goldreich & Nicholson 
1989; Schatzman 1993) is 

5.2. First approximation 

We start with the case when the parameter 5: defined in equation (3.21) is assumed 
to be small. In that case, in equation (5.1) we have to replace the monochromatic 
velocity by the Fourier transform of the real velocity, including the radiative damping 
factor, to carry out the integration over the variables k and w, and finally to take the 
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ensemble average. We then have 

Taking the ensemble average introduces 

(+,y,t)u(x’,y’,t’, f = ( U 2 ) r ( x ) r ( w ( t )  

the I‘ functions being defined by equation (4.16). We have then 

(5.3) 

to carry out the 
integration 

dw. (5.4) 

Assuming as in 94.3 that fk i i , / 04  is large and b2k2 is small, applying again the 
method of steepest descent for the integral over o, and finally fitting the result to the 
mechanical energy flux at the boundary, we have 

LE = 4nr2p(u2)---Np~-- 1 nb2 exp [-i (fkii,z4) 113 ] . 
T2Nbkb 4nr; (5.5) 

The slow decrease with depth of the luminosity of mechanical energy is essentially 
due to the interference effect, which decreases the contribution of gravity waves with 
the largest wavenumber to the radiative damping. 

Calling the damping factor c :  

c = exp [-i ( fk i in~4)1 /3 ]  , (5.6) 

we can write the mechanical energy luminosity as 

LE = ( LE) bE. (5.7) 

The mechanical energy which is needed by the diffusion process in the presence of a 
gradient p is taken from the energy luminosity and changes the mean square value 
of the velocity, (u;). In order to express this change, we add a factor B(r) to the 
expression for LE : 

LE = (LE)bfB(r). (5.8) 
Assuming that we have a quasi-stationary situation we write the differential equa- 

tion governing the flux of mechanical energy as 

d 1 dc 2 DM 
-LE + --LE - 4711 p-pVp = 0. 
dr E dr HP 

(5.9) 

We call the last term on the left-hand side G(r), and we can write the solution as 

(5.10) 

It is then possible to calculate the contribution of the dissipation of mechanical 
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energy to the inward decrease of the amplitude of internal waves. Rewriting (5.10) in 
a different form, we obtain the expression for B(r): 

(5.11) 

We see immediately that a factor B2 has to be introduced in the diffusion coefficient. 
From the previous diffusion coefficient DM we can obtain the function B ( r ) :  

1 J r b  1 4m2D~B2gpVp 
B(r) = 1 - - dr . 

(LE)b HP 
After differentiation and integration, one obtains the function B(r) : 

1 1 J” - 1 4nr2pDMgpVpdr. 
B(r)=l+-  ( L E ) b  r HP 

(5.12) 

(5.13) 

5.3. Strong damping 
We deal now with the asymptotic expression when approaching the stellar centre. The 
expression for the mechanical energy luminosity when 5 is large is 

2 

L~ 2: 4n2p (:)’ (%) &- l d k  J ( y )  ~~~~b exp [- ( y  + 7 b2k2)] dk. (5.14) 

Neglecting the wavenumber auto-correlation term, as the main contribution to the 
integral comes from the small values of k ,  we obtain the expression 

LE - exp [2kmi,rb In x ]  . 
With the value chosen for kmi, (equation (4.19)), we have 

(5.15) 

(5.16) 

Applying this result to equation (5.13), it appears that B(r) goes to a finite value 
when x goes to zero. Therefore, it confirms the property of the diffusion coefficient 
of going to zero with x .  

4 L E N x .  

6. Conclusion 
The expression for the diffusion coefficient is obtained by applying the method of 

ensemble average to random internal waves. It is necessary to introduce from the 
beginning the Fourier transform of the wave amplitude. The major contribution to the 
diffusion process is due to low-wavenumber waves, which have the smallest radiative 
damping. 

We have obtained the expression for the horizontal and vertical diffusion coeffi- 
cients. 

The horizontal diffusion coefficient is large, and decreases slowly inwards. We 
can conclude that this process generates a uniform chemical composition along 
equipotentials. The vertical diffusion coefficient, due to radiative damping, decreases 
quickly just below the boundary of the convective zone and appears to have the 
necessary properties for the understanding of lithium depletion in stars (Montalbh 
& Schatzman 1996). At greater depths, a divergence effect, simply due to the geometry 
of waves propagating inside a spherical body, produces an increase of the diffusion 
coefficient. Finally, close to the centre, radiative damping becomes the major physical 
process, and the diffusion coefficient goes to zero. The exact value of the radius 
where the damping becomes important has not been obtained here, but an order of 



380 E. Schatzman 

magnitude value derived from the validity condition of the approximation is given. 
In the solar case, it is located around r = 0.1 &. 

It is clear that the result is dependent on the description of the turbulent motion 
in the convective zone. But we can nevertheless conclude that macroscopic diffusion 
due to random internal waves is a physical process which cannot be ignored. 
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